Machine learning for health data science, fuelled by proliferation of data and reduced computational costs, has garnered ...
QA teams now use machine learning to analyze past test data and code changes to predict which tests will fail before they run. The technology examines patterns from previous test runs, code commits, ...
NOTE. These are the baseline variables determined at treatment completion and included in the analysis. Abbreviations: CIN, cervical intraepithelial neoplasia; COPD, chronic obstructive pulmonary ...
Adults with congenital heart disease (CHD) have a persistently high risk for cardiac reoperation, according to a new study.
The authors analyze the interest rate risk in the banking book regulations, arguing that financial institutions must develop robust models for forecasting ...
Researchers sought to determine an effective approach to predict postembolization fever in patients undergoing TACE.
A machine learning model incorporating functional assessments predicts one-year mortality in older patients with HF and improves risk stratification beyond established scores. Functional status at ...